Microbial community acclimatization for enhancement in the methane productivity of anaerobic co-digestion of fats, oil, and grease

Mayur B. Kurade, Shouvik Saha, Jung Rae Kim, Hyun-Seog Roh, Byong-Hun Jeon

1. Introduction

Anaerobic co-digestion (ACoD) is gaining a lot of scientific attention recently because of its capability of enhanced production of methane, improved degradation/utilization of substrates, and sustainable approach of solving environmental issues (Wang et al., 2013; Kurade et al., 2019). It involves a combination of two or more substrates, such as lignocellulosic waste, food waste, fats, oil, and grease (FOG) along with wastewater sludge (Li et al., 2013; Salama et al., 2019). Despite its high productivity, utilization of a high strength organic substrate, such as FOG, face numerous technical challenges in a co-digestion approach. The deleterious effects of accumulation of long-chain fatty acids (LCFAs) in a digester, which can create severe problems in overall methane generation process, has been studied extensively (Palati et al., 2009; Silva et al., 2016). The accumulation of LCFAs limit cell permeability and mass transport, damage the cell membranes, and inhibit acetogens and methanogens at high concentrations of FOG.

The major bacteria involved in anaerobic digestion (AD) are severely affected by the presence of high concentrations of LCFAs in the reactor; however, the inhibition caused by LCFAs is a reversible process which can be neutralized. Inhibited microorganisms including syntrophic acetogens and methanogens, regain their original metabolic activities once the LCFA-biomass associated degradation had recommenced (Palati et al., 2009). The AD inhibition caused by LCFAs is one of the most serious problems in biogas plants; thus, several studies were conducted to develop methods to overcome such inhibitions and to facilitate a stable operation for co-digestion. Angelidaki and Ahring (1992) studied addition of adsorbents to minimize the inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs. The incorporation of easily digestible co-substrates, such as glucose and cysteine, were useful in overcoming inhibitory effects of LCFAs.
Recently, an acclimated culture of propionate degrading methanogens exhibited increased tolerance to acidic environment with stable methane production between pH 4.8 and 5.5 (Li et al., 2018). Chang et al. (2018) also observed accelerated process rate of hydrogenogenic acidogenesis and carboxylic chain elongation due to utilization of an acclimatized microbiome, which yielded 31% higher specific hydrogen production potential compared to unacclimatized microbiome during the fermentation of mixed fruit waste.

Acclimatization of the anaerobic process to LCFAs has been reported earlier. Continuous or pulse exposure has increased tolerance to LCFAs and improved bioenergy recovery (Alves et al., 2001; Cavaleiro et al., 2008; Palatasi et al., 2009). The improved methane productivity through acclimated microbial communities is due to the consumption of substrate without lag time, and the produced intermediary substrates do not accumulate in the digester (King et al., 2011). An anaerobic microflora acclimatized with gradual dosing of FOG showed a significant improvement in hydrogen yield (72%) with volatile solid reduction up to 65%, compared to unacclimatized culture (Saha et al., 2019a). The authors concluded that, complete degradation of major unsaturated fatty acids in the highest FOG loading was due to the preference of the acclimatized microbiome. Enhancing the resistance of anaerobic processes through microbial acclimation to high dosage of substrate can provide a suitable method to improve the methane generation capability of microorganism without facing any process inhibition (Zeng et al., 2019). Some microorganisms cannot withstand the stress caused by the addition of a new, high strength organic substrate, while others acclimatize to the new conditions, and the substrate shows an increased dominance in the anaerobic system. Therefore, generally, microbial acclimation involves significant changes in the microbial communities present in the sludge.

Recently, we provided an insight into fundamental mechanism that regulates the methanogenic activities under the inhibitory conditions caused by the shock dosing of FOG into the digester (Kurade et al., 2019). In line with our previous demonstration, the current study is an extensive investigation to explore differential capability of acclimatized and unacclimatized seed sludge. The primary objective of this study is to investigate the differential capability of acclimated and unacclimatized seed sludges. The methane productivity and LCFAs degradation capability of unacclimatized seed sludge (USS) and acclimatized seed sludge (ASS), along with their microbial dynamics were investigated with different total solids substrate ratios. High throughput Illumina MiSeq sequencing of 16S rRNA amplicons was implemented to reveal the dynamics of bacterial and archaeal communities of USS and ASS to explore the differential mechanisms of USS and ASS. The outcome of this study can be useful to implement the improvised strategies for better substrate digestibility and greater methane production.

2. Materials and methods

2.1. Collection of wastewater sludge and lipidic substrate

The wastewater sludge, which included primary, activated, and anaerobically digested sludge (ADS), were collected from the Jungnang sewage treatment plant, Seoul, Korea. This ADS was never exposed to lipid rich substrate. The acclimatized microbial consortium was developed in the laboratory through the fed-batch operation described in Subsection 2.2. Further, 360 mL of both acclimatized and unacclimatized predigested seed inocula were transferred to separate co-digester bottles (the seed sludge was void of biogas production because of exhaustion of substrates). Mixed sludge (MS; mixture of PS and WAS at a ratio of 70:30, v/v) and FOG were added as co-substrates to these co-digester bottles in three different proportions (details presented in Table 1). L-cysteine HCl (0.5 g L\(^{-1}\)) and sodium bicarbonate (5 g L\(^{-1}\)) were added to the digester as a reducing agent and pH buffer, respectively. The co-digesters were flushed with ultrapure N\(_2\) gas (99.99%) and then closed with airtight plastic-rubber caps to maintain anaerobic conditions. All treatments were performed in triplicate and were kept in a shaking incubator (150 rpm) at 37 °C throughout the experiment.

2.2. Development of highly enriched FOG consuming microbial consortium

The anaerobic microbial consortium was developed in 1 L airtight anaerobic co-digesters made up of glass material in fed-batch mode. Predigested ADS was used as the seed inoculum. The co-digesters were fed 400 mL of seed inoculum, 75 mL of mixed thickened sludge (mixture of primary sludge (PS) and waste activated sludge (WAS) at a ratio of 70:30, v/v), and 25 mL of FOG. The volatile solids VS of FOG added to the digester in the first batch was 72% of the total volatile solids of the anaerobic co-digester. L-cysteine HCl (0.5 g L\(^{-1}\)) and sodium bicarbonate (5 g L\(^{-1}\)) were added to the digester as a reducing agent and pH buffer, respectively. The co-digesters were flushed with ultrapure N\(_2\) gas (99.99%) and then closed with airtight plastic-rubber caps to maintain anaerobic conditions. After gas production reached the saturation point, the digesters were again fed 10 mL of FOG (2% v/v). This fed-batch process was continued for ten cycles, and the recovered contents of the co-digester were further used as highly enriched FOG using microbial consortium. The consortium development was conducted in a shaking incubator (150 rpm) at 37 °C (mesophilic methane production).

2.3. Batch anaerobic co-digestion with unacclimatized and acclimatized microbial consortia

Airtight glass anaerobic co-digesters (500 mL capacity) were used for the methanogenic batch with working volume of 400 mL. The collected ADS without any further changes was the unacclimatized seed inoculum, recovered from Jungnang sewage treatment plant, Seoul, Korea. This ADS was never exposed to lipid rich substrate. The acclimatized microbial consortium was developed in the laboratory through the fed-batch operation described in Subsection 2.2. Further, 360 mL of both acclimatized and unacclimatized predigested seed inocula were transferred to separate co-digester bottles (the seed sludge was void of biogas production because of exhaustion of substrates). Mixed sludge (MS; mixture of PS and WAS at a ratio of 70:30, v/v) and FOG were added as co-substrates to these co-digester bottles in three different proportions (details presented in Table 1). L-cysteine HCl (0.5 g L\(^{-1}\)) and sodium bicarbonate (5 g L\(^{-1}\)) were added to the digester as a reducing agent and pH buffer, respectively. The co-digesters were flushed with ultrapure N\(_2\) gas (99.99%) and then closed with airtight plastic-rubber caps to maintain anaerobic conditions. All treatments were performed in triplicate and were kept in a shaking incubator (150 rpm) at 37 °C throughout the experiment.

2.4. Analytical characterization

2.4.1. Properties of wastewater sludge and FOG

The proximate and ultimate compositions of sludge and substrates, and their physical properties were determined according to the protocols reported earlier (Saha et al., 2018). The colorimetric phenol–sulfuric acid method was used to estimate the total carbohydrate

<table>
<thead>
<tr>
<th>Substrate ratio (MS:FOG) (%)</th>
<th>Total solids loading of the co-digester (g L(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed sludge</td>
<td>MS</td>
</tr>
<tr>
<td>Unacclimatized sludge (USS)</td>
<td>100:0</td>
</tr>
<tr>
<td>100:10</td>
<td>22.32</td>
</tr>
<tr>
<td>100:20</td>
<td>22.32</td>
</tr>
<tr>
<td>100:30</td>
<td>22.32</td>
</tr>
<tr>
<td>Acclimatized sludge (ASS)</td>
<td>100:0</td>
</tr>
<tr>
<td>100:10</td>
<td>20.79</td>
</tr>
<tr>
<td>100:20</td>
<td>20.79</td>
</tr>
<tr>
<td>100:30</td>
<td>20.79</td>
</tr>
<tr>
<td>Control</td>
<td>20.79</td>
</tr>
</tbody>
</table>

MS: Mixed sludge (Mixture of thickened primary and waste activated sludge (70:30)).

FOG: Fats, oil, and grease.

TS: Total solids.

VS: Volatile solid.
content of the sludge and substrates. Total nitrogen (wt%) was used as a function for determining the total protein content of all the sludge and substrates. Total lipid was estimated using the chloroform–methanol extraction method.

2.4.2. Headspace methane gas determination

Biogas was recovered from the headspace of the co-digesters into gas bags at regular time intervals. The volume of the gas was measured using a 60 mL Luer syringe, and the head space of the digesters was also considered to calculate the total volume of gas produced. The biogas composition was analyzed using gas chromatography (GC, 7890B Agilent Technologies, Palo Alto, CA, USA). The GC was equipped with HP-PLLOT/Q column (30 m × 0.32 mm × 20 µm) and a thermal conductivity detector (TCD). The inlet, column, and TCD temperatures were maintained at 120, 45, and 150 °C, respectively, under a constant pressure of 10.232 psi. Argon was used as the carrier gas. A 100 µL gas sample was injected into the GC column using an airtight sample lock syringe (Hamilton, PA, USA). A standard calibration curve of a gas mixture [CH₄ (39.72%, mol/mol), H₂ (25.06%, mol/mol), and CO₂ (24.78%, mol/mol) balanced in N₂ gas (purity-99.99%) (Greengas, Seoul)] was used for determining the methane content in the retrieved biogas from the co-digesters. A modified Gompertz equation was useful in describing the methane production curves in the batch kinetic assays (Saha et al., 2018), which is as follows:

\[
M = M_{\text{max}} \times \exp \left\{ -\exp \left(\frac{R_m \times e \times (t - 1) + 1}{M_{\text{max}}}\right)\right\}
\]

(1)

M (mL) is the cumulative methane yield, \(M_{\text{max}}\) (mL) is the total amount of methane produced in time t, \(R_m\) (mL d⁻¹) is the maximum methane production rate, λ (d) is the lag phase, t is the incubation period (d), and e is 2.718.

2.5. Determination of microbial community structure

2.5.1. Isolation of DNA and high-throughput sequencing of 16S rRNA

The samples were collected, their DNA was isolated using QIAamp DNA Stool Kit (Qiagen, Valencia, CA, USA), and they were further subjected for metagenomic analysis of 16S RNA amplicons to reveal population density of the microbial communities. The V3-V4 variable region of the 16S rRNA gene was targeted for screening of bacterial biodiversity. The bacterial and archaeal primers were designed according to the recent reports Wuchter et al. (2013) and Ziels et al. (2016), and the details are presented in Table 2. Library quantification was performed by real-time PCR using a CFX96 real-time system (BioRad, Hercules, CA, USA), and the libraries were sequenced using a 2X300-bp paired-end run (MiSeq Reagent Kit v3) on an Illumina MiSeq platform.

2.5.2. High-throughput sequencing data analysis

The PEAR software was used to join the MiSeq paired-end reads, and Trimmomatic v0.35 was used for trimming the demultiplexed amplicon read pairs (Bolger et al., 2014). The raw data was processed by FastQC v0.11.4 to filter out the reads with quality scores below 30. The retrieved clean reads were evaluated using the open-source QIIME software package (Caporaso et al., 2010). Operational taxonomic units (OTUs) corresponding to each read were chosen at 97% similarity against the Greengenes 16S rRNA database and matched with the known bacterial genomes to identify members of the hypoxial community. The OTUs were used to quantify the relative abundance. A comparative analysis was performed using the MetaCoMET web platform to determine the relative abundance between each group.

2.6. Statistical analysis

The data were presented as the mean and standard deviation of the triplicate experiments. Statistical analysis was performed using the IBM SPSS software version 21.0 for Windows. One-way analysis of variance using the Tukey–Kramer multiple comparison was used to analyze the difference between the treatments. The variations were considered statistically significant at a confidence interval of \(p < 0.05\).

3. Results and discussion

3.1. Physico-chemical properties of seed sludge and substrates

The characteristics of different sludge and substrates used in this study are presented in Table 3. Both seed sludges (unacclimatized and acclimatized seed sludge) and MS had nearly neutral pH, which is a normal characteristic of municipal wastewater treatment plant’s (WWTP’s) sludge. The FOG waste had acidic pH because of the presence of fatty acids. The major fatty acids in the FOG were oleic acid (24%), palmitic acid (13%), γ-linolenic acid (13%), linolelaidic acid (10%) and stearic acid (5%) as the dominant LCFA. The co-digestion substrates contained higher solids as compared to the seed sludge because of the thickening process of the WWTP. The ASS contained relatively lower volatile solids than the USS because of excessive digestion of the co-digestion substrates during the acclimation fed-batch process. The carbohydrates and protein fractions mainly contributed to the organic contents in the sludge. The presence of high amount of proteins in the sludge resulted in their low C/N ratio. In contrast, the high amounts of triglycerides in the FOG waste made it a carbonaceous substrate with an extremely high C/N ratio. The C/N ratio is an important factor for establishing a successful anaerobic digester, with an optimum range of 20–30 (Kurade et al., 2019). It controls ammonification, acidification of digesters caused by β-oxidation of fatty acids, and effective utilization of substrates (Oh and Martin, 2010; Saha et al., 2019a). The low C/N ratio of the sludge was compensated by the high C/N ratio of FOG, which prevents rapid acidification of digester during the hydrolysis of fatty acids in FOG and maintains an ideal pH for acidogenic fermentation.

3.2. Methane productivity of unacclimatized and acclimatized seed sludges

The methane productivities of both unacclimatized and acclimatized seed sludges were observed for various FOG loadings. The USS showed 10, 27, and 49 mL of ultimate methane production (g⁻¹ VS added) with 100:10, 100:20, and 100:30 substrate ratios, respectively (Fig. 1a). The methane production in the ASS was significantly higher than their respective counterparts of USS. It exhibited 31-, 34-, and 17-fold greater methane generation than that in USS with 100:10, 100:20, and 100:30 substrate ratios, respectively. The statistical analysis confirmed the considerable (\(p < 0.001\)) increase in the generation of

Table 2

<table>
<thead>
<tr>
<th>SN</th>
<th>PCR region</th>
<th>Primer name and sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bacterial 16S PCR amplification</td>
<td>519F (5’-CTTACGGGNGGCWGCAG-3’)</td>
<td>Wuchter et al. (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>806R (5’-GACTACHVGGGTATCTAATCC-3’)</td>
<td>Ziels et al. (2016)</td>
</tr>
<tr>
<td>2.</td>
<td>Archaeal sequence library</td>
<td>Arch-915R (5’-GTGCTCCCCCGCCAATTCCT-3’)</td>
<td></td>
</tr>
</tbody>
</table>
methylene owing to FOG addition. A regression analysis of the experimental data exhibited that the cumulative methane production was well fitted with the modified Gompertz model with the R² values between 0.89 and 0.99 (Table 4). The methanogenic activity of ASS was exceedingly higher at all the studied substrate concentrations (4 to 20-fold) than that of USS, which resulted in maximum utilization of substrates within 12 days of digestion. Among all the tested digesters, ASS with 100:30 substrate ratio exhibited maximum methane production rate (Rm= 6.86 mL d⁻¹) and greater methanogenic activity (1.43 mL g⁻¹ VSinitial d⁻¹). Moreover, the ASS did not experience any inhibitory effects of FOG loadings because of continuous adaptation of ADS microflora to FOG which resulted in faster hydrolysis and utilization of the substrate as compared to USS. The methane production in ASS on the 12th day of codigestion was 38%, 44%, and 36-fold higher as compared to that in USS, which shows that the USS exhibited slower production of methane in all the studied substrate ratios because of exposure to the new substrate (FOG). The ASS digesters utilized almost all the available substrates during first 12 days and reached their saturation point where methane production was halted/slower. At the same time, the USS digesters were facing their exponential phase where maximum methane production was observed.

The ratio of methane to carbon dioxide (CH₄/CO₂) at the beginning of AD (1 d) was very low (42–48% methane) in almost all the digesters, including USS and ASS (Fig. 1b). As digestion progressed, the CH₄/CO₂ ratio in the ASS (in all three sets) significantly improved as compared to that in the USS. The highest CH₄/CO₂ ratio in ASS (100:10 to 100:30) was observed between 4th and 12th day of digestion with 65 to 76% methane in the biogas; whereas, it was relatively lower in the ASS (within the range of 26–73%). However, this trend was reversed after 12 days, when the maximum conversion of substrates in the ASS occurred with a high methane production rate, and the earlier inhibition concentration of FOG. The hydrolysis of FOG into LCFAA and glycerol was performed instantaneously during the initial phase of ACoD. The LCFAAs were further converted to methane via intermediate production of acetate through syntrophic contributions of β-oxidizing bacteria and methanogenic archaea. However, this conversion step was the most rate-limiting process in ACoD (Cirne et al., 2007). Thus, degradation of LCFAAs being comparatively slower than hydrolysis of lipids caused over-accumulation of LCFAAs in the digesters. The accumulated LCFAAs adsorbed into the surface of methanogenic bacteria and caused deteriorated mass transfer effects and inefficient substrate utilization, which eventually inhibited methanogenesis (Silva et al., 2016; Zieß et al., 2017, 2018). Moreover, the delayed methane production in USS can be clarified by the fact that, USS was never exposed to highly carbonaceous substrates, such as FOG. Thus, it required a buffer time to withstand the high loads of LCFAAs generated during lipid hydrolysis. Contrastingly, the ASS was sequentially fed with FOG for several batch cycles and adapted to the excessive loading of the lipidic substrate. Therefore, it showed seamless production of methane even with high concentration of FOG (100:30) in the digesters (Fig. 1a). These results indicated that the acclimated microflora in the ASS utilized maximum amount of substrate with enhanced production of methane within a short duration, unlike USS with the extended lag phase. In an earlier investigation, adaptation of fermentative microbiota to xylan-rich medium enhanced methane production by 53% from hemicellulosic feedstock (Weiss et al., 2010). An increased hydrogen productivity by 3.5 times was observed during the fermentation of thin stillage due to acclimatization of microbiota to glucose (Nasr et al., 2011).

<table>
<thead>
<tr>
<th>Seed inoculum</th>
<th>Co-digestion substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>USS</td>
<td>ASS</td>
</tr>
<tr>
<td>Physical properties</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6.92 ± 0.02</td>
</tr>
<tr>
<td>Proximate analysis</td>
<td></td>
</tr>
<tr>
<td>TS (g L⁻¹)</td>
<td>24.8 ± 0.22</td>
</tr>
<tr>
<td>VS (g L⁻¹)</td>
<td>16.1 ± 0.15</td>
</tr>
<tr>
<td>VS/TS (wt%)</td>
<td>65.1 ± 0.69</td>
</tr>
<tr>
<td>Ash (wt%)</td>
<td>1.23 ± 0.11</td>
</tr>
<tr>
<td>Fixed carbon (wt%)</td>
<td>38.47 ± 2.14</td>
</tr>
<tr>
<td>Total carbohydrate (wt%)</td>
<td>7.14 ± 1.02</td>
</tr>
<tr>
<td>Total protein (wt%)</td>
<td>38.5 ± 1.2</td>
</tr>
<tr>
<td>Total lipid (wt%)</td>
<td>ND</td>
</tr>
<tr>
<td>Ultimate analysis</td>
<td></td>
</tr>
<tr>
<td>Total carbon (wt%)</td>
<td>35.4 ± 0.15</td>
</tr>
<tr>
<td>Total nitrogen (wt%)</td>
<td>5.21 ± 0.05</td>
</tr>
<tr>
<td>Total hydrogen (wt%)</td>
<td>6.14 ± 0.012</td>
</tr>
<tr>
<td>Total sulfur (wt%)</td>
<td>0.82 ± 0.02</td>
</tr>
<tr>
<td>Total oxygen (wt%)</td>
<td>52.43 ± 0.35</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>6.79</td>
</tr>
</tbody>
</table>

USS: Unacclimatized seed sludge.
ASS: Acclimatized seed sludge.
MS: Mixed sludge (Mixture of thickened primary and waste activated sludge (70:30)).
FOG: Fats, oil, and grease.
TS: Total solids, VS: Volatile solids.

Table 3
Physico-chemical properties of different sludges including anaerobically digested seed sludge and MS, FOG. The values are the mean and standard deviation (SD) of triplicate analyses.
The fate of LCFAs during anaerobic co-digestion. The major LCFAs, such as myristic, palmitic, stearic, and oleic acids, in the USS degraded in the range of 26–51%, 17–70%, and 28–51% for the substrate ratios of 100:10, 100:20, and 100:30, respectively (Fig. 3). The degradation of these LCFAs in the ASS was significantly higher than that in the USS. It was observed that, stearic acid was highly degraded in the studied digesters, with an average degradation of 57 and 83% in the USS and ASS (at all three-substrate ratios), respectively. In contrast, oleic acid was resistant to biodegradation because it showed an average degradation of 32 and 44% in USS and ASS, respectively. The FOG used in this study comprised oleic acid (24%), palmitic acid (13%), and stearic acid (5%) as the prevailing LCFAs (data not presented). It has been reported that the toxicity of these acids was relatively higher as compared with others LCFAs with IC50 in the order of oleic acid (75 mg L−1) > palmitic acid (1100 mg L−1) > stearic acid (1500 mg L−1) (Palatsi et al., 2009). Other research investigations also provided the inhibitory levels of these LCFAs with large variations, 30–880 mg L−1 for oleic acid, 30–200 mg L−1 for linoleic acid, and 1100–1500 mg L−1 for palmitic acid (Nakasaki et al., 2019). The existence of excessive amounts of these LCFAs in the FOG could have imposed high toxicity on the microbial cells, which ultimately caused inhibition in methane generation in the USS at an earlier phase of anaerobic co-digestion. However, the microbial adaptation in ASS was useful in overriding the inhibitory effects of these LCFAs, thereby resulting in seamless production of methane without showing any signs of inhibition of LCFAs. Faster degradation of LCFAs in anaerobic reactor due to microbial acclimation was in line with the observations of Silva et al. (2014), who reported 100:10, 100:20, and 100:30, respectively (Fig. 3).

Table 4

<table>
<thead>
<tr>
<th>Substrate ratio in USS digester</th>
<th>Substrate ratio in ASS digester</th>
</tr>
</thead>
<tbody>
<tr>
<td>100:10</td>
<td>100:20</td>
</tr>
<tr>
<td>R2</td>
<td>0.93</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.86</td>
</tr>
<tr>
<td>F-value</td>
<td>161</td>
</tr>
<tr>
<td>Significance F</td>
<td>2.51 × 10^{-8}</td>
</tr>
<tr>
<td>p-value</td>
<td>0.19</td>
</tr>
<tr>
<td>Rm</td>
<td>0.20</td>
</tr>
<tr>
<td>MA</td>
<td>0.049</td>
</tr>
</tbody>
</table>

USS: Unacclimatized seed sludge.
ASS: Acclimatized seed sludge.
Rm: Maximum methane production rate (mL d−1).
MA: Methanogenic activity (1.43 mL g−1 VS_{initial} d−1).
that acclimation of sludge to LCFA significantly decreased the lag phase of specific methane production. The changes in microbiota in the ASS with acclimatized LCFA-degrading microorganisms, especially syntrophic fatty acid oxidizers would be the one of the major reasons of rapid degradation of LCFA in the ASS for all studied substrate concentrations corroborating the importance of microbial acclimation to the desired substrate. The microbial dynamics of USS and ASS has been discussed in detail in the later section.

3.4. Influence on microbial community structure due to microbial acclimation to FOG

High throughput 16S rRNA amplicons sequencing revealed the changes in the microbial dynamics of seed sludge because of fed-batch sequential dosage of FOG into the digester. The high diversity between the seed sludge, which was not pre-exposed to FOG (USS), and the ASS was explained by the operational taxonomic units (OTUs). The USS and ASS shared only 7% of the common OTUs, thereby suggesting substantial discrepancies in the variance (Fig. 4a). Numerous phyla with varying dominance were detected in both USS and ASS. Among them, only top 13 major dominant phyla, which conducted critical roles in different phases of anaerobic co-digestion are shown in Fig. 4b. The USS majorly comprised of Proteobacteria (43%) followed by Firmicutes (21%), Bacteroidetes (12%), and Chloroflexi (8%), aggregating 85% of total population. The population of Euryarchaeota was in the normal range (1.4%) for the USS which is in line with the observations reported earlier (Saha et al., 2019a). The ASS mainly comprised of Firmicutes (40%), Bacteroidetes (32%), Synergistetes (10%), and Euryarchaeota (8%), cumulatively forming 90% of the total microbial population. These phyla play a major role in AD, especially in co-digestion of FOG (Kurade et al., 2019; Saha et al., 2019a,b). It has been observed that, the bacterial population belonging to phyla Firmicutes, Bacteroidetes, Proteobacteria and Thermotogae was increased due to addition of oleate in anaerobic reactor (Baserba et al., 2012). Several syntrophic bacteria belonging to Firmicutes are reported to produce volatile fatty acids (VFAs), such as acetic and butyric acids, through hydrolysis of various substrates. Acetic acid is a well-known primary substrate for methane generation through acetoclastic methanogenesis (Yi et al., 2014), while butyric acid is used by some of the genera from Firmicutes (Yang et al., 2014). Bacteroidetes includes various microbial genera that secrete numerous lytic enzymes, such as lyases, hydrolases, lipases, and ligases, which disintegrate complex organic matter to generate acetic acid (Chen et al., 2007). Some of the families in Synergistetes phylum produce acetate, hydrogen, and carbon dioxide via fermentation of glucose and organic acids; however, this occurs only in the presence of hydrogenotrophic methanogens to prevent product inhibition (Si et al., 2016). Similarly, the phylum Euryarchaeota was significantly higher (8%) in the ASS as compared to that in the USS (1.4%), which ultimately resulted in effective transformation of generated acetic acid into methane without inhibition. The phylum Euryarchaeota comprises all the methanogenic bacteria including acetoclastic methanogens, such as Methanosaeta and Methanosarcina, and hydrogenotrophic methanogens, such as Methanobacterium, Methanoculleus and Methanoregula. Thus, abundance of important phyla of ACoD in ASS provided effective degradation of substrates and generation of methane. An increase in the bacterial population of Synergistetes and Euryarchaeota due to presence of linoleic acid, oleic acid, and palmitic acid in synthetic lipid rich wastewater has been reported recently (Nakasaki et al., 2019).

A genera level analysis was performed and most dominant genera in USS and ASS with a threshold of 1% are shown in Fig. 5. It showed that Pseudomonas (32%), Tissierella (7%), Petrimonas (4%), and Levilinea (4%) belonging to the phylum Proteobacteria, Firmicutes, Bacteroidetes, and Chloroflexi, respectively, were highly dominant in the USS. The most dominant genera in the ASS includes Sporosarcina (20%) (phylum - Firmicutes), Proteiniphilum (11%) (phylum - Bacteroidetes), Methanosarcina (8%) (phylum - Euryarchaeota), Lutuonella (7%) (phylum - Bacteroidetes), and Aminobacterium (6%) (phylum - Synergistetes). Some of the genera belonging to abovementioned phyla perform acetogenesis and interspecies electron transport in the form of hydrogen or formate in syntrophic interactions with methanogens (Saha et al., 2019b). These bacteria oxidize VFAs and alcohols to acetic acid, hydrogen, and carbon dioxide in acetogenesis, which are simultaneously converted to methane by acetoclastic/hydrogenotrophic methanogens. Bacteria in the Aminobacterium genus effectively utilize numerous amino acids, thereby producing a range of VFAs and ammonia, especially in the presence of hydrogenotrophic Methanobacterium as a hydrogen scavenger (Hamdi et al., 2015; Ferguson et al., 2018). Similarly, Aminivibrio (0.32% abundance in ASS) belonging to phylum Synergistetes can oxidize several amino acids in a syntrophic relationship when co-cultured with the hydrogenotrophic methanogen Methanobacterium formicicum (Saha et al., 2019b). The genus Mariniphaga, a known interspecies electron transporter in anoxic
The presence or abundance of these syntrophic bacteria in ACoD suggests their role in direct/indirect electron transfers to methanogens through the oxidation/reduction of conductive materials.

Syntrophomonas was 12-fold higher in case of ASS as compared to that in USS. Syntrophomonas is one of the preeminent genera required for the metabolism of LCFAs. Syntrophic fatty acid oxidizers, with association of methanogenic archaea, catalyze the LCFAs into methane through several steps (Sousa et al., 2009). Thus, the dominance of Syntrophomonas in the ASS was a major reason for rapid breakdown of LCFAs into acetates, which was further converted to methane through aceticlastic methanogens in a syntrophic relationship. This also avoided the inhibitory accumulation of LCFAs. Ziels et al. (2016) observed that a reactor fed with FOG significantly increased the population of Syntrophomonas by 4.7-fold. The FOG-loading capacity of a digester can be predicted by observing the abundance of Syntrophomonas population; thus, an improved LCFAs degradation rate can

Fig. 4. Venn diagram representing the number of unique and shared operational taxonomic units (OTUs) in unacclimatized seed sludge (USS) and acclimatized seed sludge (ASS) digesters (plotted in MetaCoMET) (a). Microbial community structure of unacclimatized seed sludge (USS) and acclimatized seed sludge (ASS) presented at phyla level (b). High throughput amplicons sequencing of seed sludge was conducted at the beginning of anaerobic co-digestion. For interpretation of the references to high-resolution color in this figure, readers are advised to visit the web version of this article.
because the former group produce acetate and H2 and the latter con-
acid oxidizers and methanogens thrive in a symbiotic relationship,
be achieved (Ziels et al., 2016; Amha et al., 2017). The syntrophic fatty
are advised to visit the web version of this article.

be achieved (Ziels et al., 2016; Amha et al., 2017). The syntrophic fatty
acid oxidizers and methanogens thrive in a symbiotic relationship,
because the former group produce acetate and H2 and the latter con-

Fig. 5. Heat map of the dominant microbial genera in unacclimatized seed
sludge (USS) and acclimatized seed sludge (ASS). Cluster analysis was per-
fomed with dominant genera only (abundance threshold was set at 1%). The

References

and oleic acid on biomass development in anaerobic fixed-bed reactors. Part I: bio-

community adaptation to anaerobic co-digestion of fats, oils, and grease and food

Lutanaella thermophila gen. nov., sp. nov., a moderately thermophilic member of the
Microbiol. 59, 2069–2073.

Baserba, M.G., Angellidaki, I., Karakashev, D., 2012. Effect of continuous oleate addition
on microbial communities involved in anaerobic digestion process. Bioresour.

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K.,
Pierce, N., DeSantis, T.Z., Gevers, D., Gordon, J.I., Huttley, G.A., Kelley, S.T.,
Knight, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D.,
Purcell, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J.,
Yatsunenko, T., Zaneveld, J., Knight, R., 2010. QIIME allows analysis of high-

Improvement of aceticogenic fermentation using an acclimatized microbiome. Int.
J. Hydrogen Energy 43 (49), 22126–22134.

digestion of lipid-rich waste - Effects of lipid concentration. Renew. Energy 32 (6),
965–975.

De Vos, W., Hennabed, T., Boon, N., Verstraete, W., 2012. Methanosarcina: the redis-

Ferguson, R.M.W., Coulon, F., Villa, R., 2018. Understanding microbial ecology can help

Hamdi, O., Ben Hania, W., Postec, A., Bouallaghi, H., Hamdi, M., Bonin, F., Ollivier, B.,
Fardeau, M.L., 2015. Aminobacterium sheffurnii sp. nov., a mesophilic, amino-acid
degrading bacterium isolated from an anaerobic sludge digester, pertaining to the

52, 1217–1223.

King, S.M., Barrington, S., Guirao, S., 2011. In-storage psychrophilic anaerobic digestion
of swine manure: acclimation of the microbial community. Biomass Bioenergy 35 (8),
3719–3726.

Aerotachlorocetic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats,

Li, C., Champagne, P., Anderson, B.C., 2013. Biogas production performance of meso-
ophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-
continuous flow digesters: effects of temperature, hydraulic retention time, and

Li, Y., Sun, Y., Li, L., Yuan, Z., 2018. Acclimation of acid-tolerant methanogenic pro-
pionate-utilizing culture and microbial community dissecting. Bioresour.
Technol. 250, 117–123.

Lins, P., Reitschuler, C., Illmer, P., 2014. Methanosarcina spp., the key to relieve the start-
up of a thermophilic anaerobic digestion suffering from high acetic acid loads.

